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Abstract: There are numerous phylogenetic reconstruction methods and models  

available—but which should you use and why? Important considerations in phylogenetic 

analyses include data quality, structure, signal, alignment length and sampling. If poorly 

modelled, variation in rates of change across proteins and across lineages can lead to 

incorrect phylogeny reconstruction which can then lead to downstream misinterpretation of 

the underlying data. The risk of choosing and applying an inappropriate model can be 

reduced with some critical yet straightforward steps outlined in this paper. We use the 

question of the position of the root of placental mammals as our working example to illustrate 

the topological impact of model misspecification. Using this case study we focus on using 

models in a Bayesian framework and we outline the steps involved in identifying and 

assessing better fitting models for specific datasets.  
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1. Introduction 

Phylogenetic reconstruction methods are based on a set of parameters that describe the process  

of evolution in molecular sequence data. These parameters can be explicitly defined as for Maximum 

Likelihood and Bayesian approaches or implicit as is the case for Maximum Parsimony [1]. Different 

regions of a protein, as well as codon positions [2], can evolve at different rates and to capture this 

heterogeneity the among site rate variation (ASRV) parameter was developed. One of the earliest 

applications of the ASRV model was to resolve the relationship between Eukaryotes, Archaea and 

Bacteria which had previously been attempted using homogeneous models [3,4]. From the comparison 

of the approaches it was evident that modeling heterogeneity across sites in the data improved the 

estimation of the phylogeny. This is also the case within more closely related groups where variation in 

body size, metabolic rate, longevity and germ-line generation time contribute to variation in rates  

of change and also to differences in composition biases among species. This heterogeneity in 

evolutionary rates and compositions is particularly evident in mammals [5,6] and it follows that the 

application of models that do not account for this heterogeneity between and within species (i.e., 

homogeneous models) may be inadequate for such data [7].  

The model consists of two parts: a scheme (sometimes referred to as the model) and a tree. The  

scheme is the way we describe how the sequences have evolved and it is composed of two parts: (i) the 

composition vector and (ii) the exchange rate matrix. The composition vector describes the base 

frequencies in the data—an important model consideration given biased gene conversion in  

mammals [8,9]. The exchange rate matrix describes the probability of a character being exchanged for 

another character. Models of evolution have increasingly become more sophisticated and complex. 

However, the increased number of free parameters required for the additional complexity equates to 

higher sampling variance, and this in turn diminishes the power to differentiate between competing 

hypotheses. Over-fitting a model to the data could lead to a decrease in support values, but under-fitting 

a model would lead to strong support for an erroneous topology. It is the case that the application of 

larger/genome scale data greatly reduces the risk of over-fitting a model but the risk of under-fitting is 

still significant, therefore a model should be chosen based on its fit to the data. Ideally one wants to 

apply the least complex model that most adequately models the data [1]. To generate a heterogeneous 

model we begin by finding a substitution model. It is recommended to use the data itself to determine a 

“model of best fit” [10], which of course will vary from dataset to dataset. By testing and comparing 

different models with the data we can find “the best” model (that has the least number of free 

parameters) from the available pool of models [10,11]. There are well known methods designed for 

this purpose for example ProtTest [12] (for protein sequences), ModelTest [13] (for nucleotides), 

MrModelTest2 [14] (for nucleotides) and ModelGenerator [15] (proteins and nucleotides). This initial 

step provides us with a homogeneous model of best fit for the data. 

In general, phylogenetic reconstruction has been performed on nucleotide or amino acid data. 

Alignments can also be recoded into Dayhoff categories [16], based on their physiochemical 

properties, thus reducing the 20 character states of amino acid (AA) data down to six states. This 

effectively removes a layer of composition heterogeneity in the data, which can be useful when models 

are not adequate for the data. Using Dayhoff categories reduces the number of character states allowing 

for parameters to be estimated directly from the AA data [7,17]. For nucleotide substitution models, it is 
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possible to estimate all parameters from the data, as there are only four character states (A, G, T, C) 

and recoding the data as purines (R) and pyrimidines (Y), or RY-coding for short, can further reduce 

the character states to just two [18]. RY-coding can remove a layer of composition heterogeneity within 

the data, but it has also been shown to remove informative transition substitutions [19]. For nucleotides, 

the exchange rate matrix and composition vectors are calculated from the alignment. The first 

statistical model described was the Jukes and Cantor (JC) model [20]. The JC substitution model 

assumes all composition frequencies are equal and the exchange rate between the character states is 

equal. Models that expanded on JC include the F81, that allowed base frequencies to vary [21]. This 

ultimately led to the development of the GTR (General time reversible) model [22,23]. The GTR 

model allows for each type of substitution to have a probability in a reversible manner i.e.,  

an A to T substitution is the same as T to A, and it can estimate composition from the data. Evidently, 

many of the less complex models are nested within the more complex models [11]. A set of empirical 

models for protein sequences have been developed based on specific data types. For example, the 

Jones-Taylor-Thornton (JTT) model is based on transmembrane proteins [24] and the Whelan and 

Goldman (WAG) model is based on globular proteins [25] and many other protein models exists [26–33]. 

There have been two main approaches to modeling the evolutionary history of sequences, homogeneous 

modeling and heterogeneous modeling. These differ in their construction/assumptions and in their 

interpretation of biology. We define homogeneous models as those that do not account for 

compositional variation and exchange rate variation across the phylogeny (between species in the 

alignment) or across the data (e.g., between sites in the alignment) [7]. The most advanced 

homogeneous models can model rate heterogeneity but are unable to model compositional 

heterogeneity. Homogeneous models utilise a single rate matrix and composition vector and can 

incorporate a gamma distribution for among site rate variation (ASRV) [2]. An advantage of using these 

models and software like RAxML over heterogeneous models is their speed [34]. RAxML models rate 

heterogeneity across sites using a CAT model [35]. CAT allows for rapid modeling of large datasets as 

it acts as an approximation of the gamma parameter and speeds up the tree search. In addition to this, 

RAxML also implements CAT + rΓ. This rΓ alogithim uses Γ (gamma) to refine the estimations of the 

CAT model [35,36]. RAxML’s CAT allows for site-specific rates of evolution and should not be 

confused with the CAT model implemented in PhyloBayes [36,37]. The PhyloBayes CAT model [36,37] 

takes into account that characters at different sites in an alignment can have different probabilities of 

evolving into another character. For example, an Arginine at one site in an alignment might have a 

high probability of evolving into a Histidine while an Arginine at another site in an alignment can have 

a higher probability of evolving into a Lysine. Therefore, the CAT model in RAxML [35] and 

PhyloBayes [36] are different because the PhyloBayes CAT model allows for among site 

compositional heterogeneity and RAxML’s CAT does not.  

Homogeneous models are often too simplistic to account for biological reality. Therefore, 

phylogenetic reconstruction based on such models can lead to erroneous topologies if there is, for example, 

compositional heterogeneity evident in the data [7,10]. Heterogeneous models can model exchange rate 

variation and compositional variation between species or across the sites in the dataset [7,10,37] and 

are described below in detail. 

The two major frameworks used in modern molecular phylogenetic analyses are maximum  

likelihood (ML) estimation and Bayesian inference. Some approaches rely exclusively on one of the 
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frameworks [34,36] while others can use a mixture of both [10]. It has been shown that both methods 

will not necessarily conclude the same “answer” [38], thus emphasizing the importance of judiciously 

choosing a method for the task at hand.  

ML uses the “likelihood function” which is the probability of generating the observed data given a 

particular hypothesis. In our case, the likelihood function is the probability of the data given the 

topology and other parameters such as branch lengths and nucleotide frequencies [21,39], but an absolute 

probability is not returned. To calculate the probability of an event (t) we need to know all possible 

outcomes (O) and the number of times t is observed in the test, therefore probability = t/O. Likelihood 

becomes particularly useful when we do not know all the possible outcomes. A single tree with the highest 

likelihood (often the lowest negative log-transformed likelihood) is the most likely tree. A statistical 

technique called bootstrapping [40] is often coupled with ML to assign node support values to the tree, 

and this allows us to assess how strongly the data supports each split on the ML tree [21,41]. 

Bayesian inference is closely related to ML—it estimates the posterior probability of a tree by 

combining the likelihood of the tree and prior probability of the tree given the model. Bayes theorem 

gives the posterior probability of an event occurring (i.e., a hypothesis) conditioned upon the prior 

probability of the event, which is the probability of the event before new evidence is considered [42]. 

The Bayesian approach is dependent on priors, which is both an advantage and disadvantage of this 

approach [43]. Advantages of Bayesian methods are that they are efficient means of complementing 

complex models and strong data can overcome poor priors. Unlike the aforementioned ML, Bayesian 

phylogenetic inference will produce a set of credible trees that are sampled according to their 

likelihood. A major difference between the two methods is that Bayesian inference generates a 

posterior distribution for the parameters rather than a fixed value. Bayesian phylogenetic inference only 

became viable when combined with Markov-chain Monte Carlo (MCMC) approaches [44,45] which 

allowed for sampling over parameter space. Advances on the MCMC, such as Metropolis-coupled 

MCMC (MCMCMC), have proven effective in tackling the problem of local maxima [46].  

Given a set of genes from a group of organisms of interest, there are two main approaches to 

phylogenetic reconstruction. The first is to build gene trees individually and to apply a coalescent 

model or a supertree approach to generate a phylogeny that captures the variation across gene  

trees [47]. The second approach is to concatenate the alignments into a supermatrix and from this 

single alignment generate a phylogeny. As is often the case for complex phylogenetic questions, we 

have large datasets that we are interested in analyzing, and this is not tractable using co-estimation type 

coalescence. An alternative would be to use shortcut coalescence, but it has already been shown that 

the supermatrix approach is superior at deep timescales [47]. A hybrid of the concatenation and 

coalescence approaches has previously been applied to the mammal phylogeny conundrum [48]. We 

focus on the supermatrix approach here.  

In summary, there are a number of approaches for phylogenetic reconstruction from which the user 

can choose, the 3 main approaches discussed above are summarized in Table 1. 

2. A Practical Guide for Phylogeny Reconstruction 

Given the information above, we provide a step-by-step guide for phylogeny reconstruction using 

heterogeneous models if the data requires it, and we describe how to find the best model and how to 
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assess how well that “best model” describes the data. Accounting for heterogeneity in sequence data is 

central to phylogeny reconstruction. This is achieved through data partitioning and/or mixture 

modeling. The aim of partitioning is to divide the dataset into subsets of sites that can each be  

modeled independently. Partitioning is a crucial step requiring due statistical consideration. Recent 

developments in partitioning approaches include PartitionFinder [49] and TIGER [50]. PartitionFinder 

allows the user to objectively select the partitioning scheme and nucleotide substitution models for 

large nucleotide datasets (coding and non-coding) in realistic time frames through the implementation 

of Bayesian, akaike and corrected akaike information criteria (BIC, AIC and AICc respectively). Taking 

an alternative yet complementary approach, TIGER uses similarity between characters as a proxy for 

evolutionary rate in a phylogeny independent manner, thereby removing the systematic biases caused by 

imposing a topology on the data to produce partitions [50]. More recently, PartitionFinder has 

incorporated the TIGER method, allowing the method to estimate the number of partitions directly 

from the data [51]. These approaches remove the need for ad hoc solutions to determining suitable 

partitions for a given dataset and provide the community with robust statistical methods to determine 

the partitions that are best for their data—including very large datasets. On the other hand, the mixture 

model approaches, such as PhyloBayes CAT [36] and P4 [10], account for site-specific rates of evolution 

and composition and thus accommodate heterogeneity within the modeling process. There is merit in 

combining both approaches, i.e., having an appropriately partitioned dataset that is modeled using 

lineage heterogeneous models such as those implemented in P4 [10].  

Table 1. A summary of some of the advantages and disadvantages of different approaches 

to phylogeny reconstruction. 

Method Advantages Disadvantages 

RAxML [35]  

(Maximum likelihood) 

Very Fast  

Easy to use  

Recommended for homogeneous modeling 

No heterogeneous modeling  

Often too simplistic 

P4 [10] (Bayesian) 

Models heterogeneity across lineages  

Extensible  

Strong statistical framework 

Python knowledge helpful  

Time/computationally consuming 

Convergence diagnosis difficult 

PhyloBayes [36] 

(Bayesian) 

Employs CAT model of heterogeneity  

Very easy to use  

Multi-processor (MPI) version available  

Convergence is easily assessed and can be done automatically

Computationally intensive and time 

consuming, even with MPI. 

(However, newer computer clusters 

are more readily prepared for this.)

In this paper we focus on the heterogeneous modeling approach, for more information on 

partitioning approaches we direct readers to [52]. To begin, we outline what type of data can be used 

and how to determine if the data requires this type of modeling in the first place. 

2.1. What Type of Molecular Sequence Data Should I Use? 

To begin, a high quality multiple sequence alignment (MSA) is essential. If the reader is unfamiliar 

with generating such an MSA we suggest gaining experience with this before continuing with the 

analysis [53–58]. It is also important to assess the quality of the alignment quality and we recommend 

automated tools such as AQUA [55] and MetAL [59].  
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As mitochondrial data have low recombination rates, they have been used extensively in 

phylogenetic reconstruction including assessment of the mammal tree [60–62]. However, the 

application of whole mitochondrial genomes did not retrieve many of the groupings in the mammal 

clade that are well-known from morphological and nuclear gene analyses and it was proposed that 

mitochondrial data are better suited to shallower depths [63,64]. Analyses of these data have become 

increasingly sophisticated leading to the development of methods specifically for mitochondrial data, 

for example, a three-state general time reversible DNA substitution model that accommodates 

homoplasy in the data [60], and an approach that uses the secondary structure to guide the alignment of 

RNA sequences [60]. Accounting for rate heterogeneity across the data by the application of 

appropriate models and data partitions produced mammal phylogenies from mitochondrial data that are 

similar to those derived from nuclear genes [61,62]. More recent studies of the application of 

mitochondrial data to the resolution of the mammal tree of life have again called into question the 

power and suitability of mitochondrial genes (individually or concatenated into a supermatrix) to 

resolve this particular phylogeny [65]. These studies nicely illustrate the importance of data choice, the 

impact of model specification on phylogeny reconstruction and the need to adapt and develop models 

that are suitable for specific data types.  

Using protein-coding nucleotides to reconstruct a phylogenetic tree can be desirable because the 

parameters for the model can be estimated directly from the data (unlike empirical amino acid models). 

Amino acid data provide another option for phylogenetic reconstruction, however the draw back here 

is that it is often too computationally intensive to gain parameter estimates directly from amino acid 

data. Therefore, empirical models of substitution are often used [12,26,27,29–33]. While deep 

divergences always have increased risk of “erased” signal due to multiple substitutions at the same 

site, it is worth noting that nucleotide sequences have been successfully used at levels as deep as, for 

example, 500 million years [66]. The issue of saturation is often cited as justification for applying 

amino acids rather than nucleotides, however amino acids can also saturate rapidly and can change 

rapidly between functionally identical groups causing functional convergence issues that are not seen 

at the nucleotide level. Therefore, while there is a common view that amino acids are useful for deeper 

evolutionary distances and nucleotides for shallower timescales [67]—it is a gross simplification to 

select amino acids over nucleotides for phylogeny reconstruction. Software packages such as P4 [10] 

and PhyloBayes [36,37] allow for more complex modeling of amino acid substitutions thereby 

improving the modeling of amino acid sequences.  

2.2. Is My Data Compositionally Homogeneous? 

It is essential that the modeling approach adopted is justifiable. For example, if the data is 

compositionally homogeneous then there is no justification for applying a compositionally 

heterogeneous model. The traditional χ2 test for compositional homogeneity is problematic because it 

uses a χ2 curve as a null distribution [10]. When all sites are free to vary and sequences are not related, 

the traditional null distribution is valid. However, when sequences are related (which will be the case 

in a multiple sequence alignment) then the null distribution is vulnerable to type II error (failure to 

reject a false null hypothesis resulting in a false positive). Therefore, we recommend the test for 

compositional heterogeneity implemented in P4 [10]. This is superior to the traditional χ2 test because 
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a null distribution is gained through calculating χ2 values from simulated data based on the appropriate 

model and tree. If this test fails then the data are compositionally heterogeneous and this indicates that 

more sophisticated modeling is needed (Figure 1). 

 

Figure 1. A flowchart of the steps involved in phylogenetic reconstruction using 

heterogeneous models. All the major steps we have described in performing a phylogenetic 

reconstruction using heterogeneous models are summarized here. (A) Starting with a 

multiple sequence alignment, the test for compositional homogeneity is carried out. Failing 

this test means the data must be modeled using a heterogeneous model. There are two 

phases to generating the heterogeneous model of best fit in P4 these are depicted in (B) and 

(C); (B) The first phase estimates the number of composition vectors needed for the 

dataset; (C) The second phase estimates the number of exchange rate matrices; (D) Depicts 

the assessment of the model adequacy using posterior predictive simulations and the 

generation of the trees from which a consensus tree is generated. 
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2.3. What If My Sequences Vary in Rates of Change across Their Length? 

Not all sites within a gene evolve at the same rate, some are functionally constrained and are 

therefore highly conserved, whereas other sites such as the third position in a codon can be free to vary 

and have higher rates of change. Among site rate variation (ASRV) is therefore important when 

modeling evolution [2] and the gamma distribution has proven useful to this end [68,69]. The gamma 

distribution has a key shape parameter “α”, which gives it desirable flexible attributes and allows variation 

in substitution rates across sites. The gamma curve will change depending on α, for example α = 0.25 

would have an “L-shaped” gamma curve and α = 10 would have a “bell-shaped” gamma curve. This 

flexibility is important, as some genes will have extreme ASRV and other will have a much smaller 

range. Using a discrete approximation of the gamma distribution, it is possible to define a number of 

rate categories to simplify the distribution, rather than integrating over the continuous curve. It has 

been shown [2] that four rate categories is sufficient for phylogenetic studies, where each uncertain site 

is analyzed in each rate category and a site rate that improves the model fit is estimated. The average 

likelihood across the four categories at each of these sites is used. In this way, the fast category will 

contribute most to the rapidly evolving sites and the slow category will contribute most to the slowly 

evolving sites [2]. This approach is commonly used to model rate heterogeneity [10]. The Invariance 

(+I) parameter is often used in models to account for sites in the dataset that do not change [70]. 

However, there is controversy around this parameter with some cautioning against using both +I and 

Gamma (+G) simultaneously [71] because the +G parameter accounts for invariance and therefore the 

+I and +G parameters affect each other’s estimations [72]. 

2.4. What If My Sequences Have Both Compositional Heterogeneity and Rate Heterogeneity? 

Compositional heterogeneity using a node-discrete composition heterogeneity (NDCH) model  

and rate heterogeneity using a node-discrete rate heterogeneity (NDRH) model are implemented in  

P4 [10]. NDCH and NDRH can model heterogeneity between lineages. Other studies have 

implemented heterogeneity between lineages [73–75], and they have accomplished this using many 

parameters, meaning that over-parameterization can be an issue for reliable reconstruction and it does 

not scale well [76]. P4 is able to model heterogeneity using relatively few additional parameters [10]. 

It allows for multiple composition vectors and exchange rate matrices over the phylogeny and at any 

one time during the MCMC run each node is associated with one of the available composition vectors 

and exchange rate matrices. Therefore, each lineage can select the most appropriate model for itself (from 

a number of possible models). In most cases, this approach is more biologically realistic than 

homogeneous modeling [10]. It has been shown that the heterogeneous models in P4 are a better fit to 

mammal data than homogeneous models, and previous studies have produced erroneous topologies 

due to poor model fitting [7]. 

2.5. What If My Sequences Have Both Compositional and Rate Heterogeneity across Sites? 

PhyloBayes uses a Bayesian framework for phylogenetic reconstruction [36] and it is capable of 

employing a model called CAT which is an infinite mixture model. As mentioned earlier this should 

not be confused with the CAT model of RAxML [35]. PhyloBayes is capable of modeling 
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heterogeneity across sites; here the CAT model can account for site-specific amino acid or nucleotide 

parameters. Each column of the alignment is assigned to a profile that is most representative of the 

column. There are a number of profiles estimated from the data and each acts as a specific average of 

parameters. Therefore, instead of having one average set of parameters for the alignment (i.e., a 

homogeneous model) it is possible to have a number of specific averages that can model the different 

columns of the data (i.e., a heterogeneous model). In a way, this is a site-specific data partitioning without 

the need for prior knowledge. The CAT model has become particularly powerful with the release of 

PhyloBayes MPI [77] which facilitates the application of multiple processors to accelerate (up to a limit) 

the MCMC calculations [36,37,77]. 

2.6. How Do I Select the Optimum Model for My Data? 

Bayes Factor (BF) analysis is a Bayesian method that can be used to select between nested models 

(Figure 2) and this is particularly useful in P4 [10]. In P4 the user can vary the number of parameters 

of the core model, for example, the user can test a GTR model with two composition vectors and one 

rate matrix and compare this to a GTR model with three composition vectors and one rate matrix. 

There are many permutations of possible models with different numbers of composition vectors and 

rate matrices. BF analysis allows the user to find which one of the models fits the data best, always 

selecting for the model with the lowest number of parameters. Using Newton Raftery Equation (16) [78] 

within the P4 environment, the user can calculate the logarithm of the marginal likelihood and then 

compare the P4 models using the following test: 2[lnL(model B) − lnL(model A)] for each possible 

pairwise comparison of models. We compare the resulting value to the Kass and Raftery table [79]. If 

the value is greater than 6, then there is a strong indication that model B is a better fit to the data than 

model A. We then compare model C to model B in the same way and so on until we get a BF below 6. 

In which case, the model being tested is not a better fit to the data. There is no need to carry on at this 

point with the comparisons to the remaining models because we observe an increase parameterization 

that does not improve the fit (Figure 2) [10,79,80]. It is important that Bayes factor analysis and 

posterior predictive simulations described in step (vi) below are both used when one considers “does my 

model fit my data significantly?” 

2.7. Does My Model Fit My Data? 

Posterior predictive simulation (PPS) is a Bayesian model fit test that can be applied to both 

heterogeneous models and homogeneous models to give statistical support for how well a model 

describes a specific dataset [81]. Data is simulated under this model, and if the model describes the real 

data well, then our simulated data should be similar to the real data. Data is simulated based on the 

model used for the real data analysis and all the parameter estimations retrieved during the MCMC 

run. The simulated data can be compared to the real data through a single parameter—commonly the 

composition parameter is used for comparison. It is suggested that multinomial likelihood is used to 

test overall model fit and that the composition parameter is used to test how well this parameter is 

modeling the composition of the data [43]. Considering the resultant graphs from a PPS analysis, a 

model that fits well will plot the real test statistic close to the central mass of the histogram that is 

composed of the simulated test statistics (Figures 3 and 4). From a statistical perspective, a tail area 
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probability of 0.5 is optimal and indicates the model describes the data well [10]. In PhyloBayes the 

output of the PPS are given as a Z-score, where a Z-score >2 is an indication that the model does not 

fit the data [36]. 

 

Figure 2. Overview of a sample Bayes factor analysis. Models are denoted as A, B, C and D 

and parameters increase from A to D (i.e., Model A is the least parameterized model). They 

are compared in a pairwise manner as denoted by the lower triangular matrix. Each 

pairwise comparison results in a score (or Bayes Factor) by calculating 2[lnL(Model B) − 

lnL(Model A)]. Significance is based on the Kass and Raftery equation [79]. Cases where 

the Bayes Factor comparison yields a significant result are shown in green and models that 

do not significantly improve the fit to the data are given in red. Model C is selected as the 

“best-fit model” as an increase in parameters in Model D does not significantly improve 

the model fit. Therefore we do not continue to search more parameter rich models and we 

choose Model C (highlighted in yellow).  

 

Figure 3. Assessment of fit of the Homogeneous and Heterogeneous models for the 

RomiguierTopAT dataset. The leftmost histogram in grey shows the results of the posterior 

predictive simulation for RomiguierTopAT using the homogeneous model. The rightmost 

histogram in blue shows the improved posterior predictive simulation on modeling 

RomiguierTopAT with the heterogeneous model of best fit (i.e., 2GTR + 4C + 4G for 

RomiguierTopAT). In both simulations the X-axis represents the parameter of comparison 

taken from the simulations, and the Y-axis represents the frequency. The large black arrow 

indicates the value of test statistic (χ2) retrieved from the real data. 
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Figure 4. Assessment of fit of Homogeneous and Heterogeneous models for “Subsets 1–8”. 

(A) Posterior predictive simulations for the “Subsets 1–8” are shown. The leftmost section 

of the table shows the results for the homogeneous model. The rightmost section of the 

table shows the improved tail area probability on modeling the data with heterogeneous 

models. Values closer to zero represent a poorer fit of the model to the data; (B) The 

results of the posterior predictive simulations for one subset (Subset 1) are shown in detail. 

Again the simulation for the homogeneous GTR model is shown in grey and the 

heterogeneous P4 model of best fit is shown in blue (i.e., 2GTR + 4C + 4G). In both 

simulations the X-axis represents the parameter of comparison taken from the simulations, 

and the Y-axis represents the frequency. The large black arrow indicates the value of test 

statistic (χ2) retrieved from the real data. 

3. A Case Study from the Root of the Placental Mammal Tree 

Placing the root of the placental mammal tree has been a controversial topic [82]. Many studies 

have concluded conflicting positions, sometimes even from the same pool of data [7,64,83–85]. In 

2013, two molecular studies narrowed down the root of the placental mammal phylogeny to one of two 

possibilities: (i) an Afrotherian root which places mammals such as elephants as the earliest diverging 

placental mammal group [85]; and (ii) an Atlantogenata root, placing the common ancestor of the 

Xenarthra (e.g., armadillo) and Afrotheria as the earliest diverging placental mammal group [7].  

In addition, it has been shown that previous studies of the position of the root of placental mammals 

lacked definitive resolution because of suboptimal models and datasets of low power [7]. It has been 

proposed that GC-rich genes lead to erroneous topologies (as GC is a proxy for recombination), and 

therefore that data partitioning should play a major role in the resolution of the mammal phylogeny. 
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Evidently, the data and subsequent model used can greatly impact the result of the phylogenetic 

reconstruction. We demonstrate the application of the guidelines above to modeling the root of the 

placental mammal phylogeny. We propose that the conflicting positions for the root are due to model 

misspecification. 

We set out to assess whether the models applied in the Romiguier et al. study were adequate for the 

data used [85]. In this study a set of mammal single gene orthologues were assembled from 39 

mammal species and each of the 13,111 single gene families were categorized as GC-rich (>40% GC3 

content) or AT-rich. The phylogenetic analysis of these datasets showed that GC-rich genes are most 

likely to support erroneous topologies and that AT-rich genes have a rate of error five times’ lower 

than that of GC-rich genes. The AT-rich genes supported an Afrotheria rooting, while the GC-rich 

genes supported an Atlantogenata rooting. The authors argued that the use of GC-rich genes 

contributes to conflict in the placement of the root of the placental mammal tree. The two datasets we 

use are named as per their original publication [85]:  

(1) “RomiguierTopAT”: This is a concatenated alignment using 100 of the most AT-rich genes. 

We wished to assess the impact of heterogeneous modeling on these data and on the support 

for the proposed Afrotheria hypothesis.  

(2) “Subsets 1–8”: Each of the eight subsets are a concatenated alignment using 25 genes chosen 

at random with varying GC-richness. We wished to assess whether heterogeneous models can 

adequately model the GC variation. 

Following model selection analysis using ModelGenerator [15], the GTR model was selected.  

The results of the compositional homogeneity test showed that for the RomiguierTopAT of the 39 taxa, 

there were 12 that did not fit the homogeneous model. The RomiguierTopAT dataset therefore was 

compositionally heterogeneous but it was analyzed using a compositionally homogeneous model [85]. 

Using P4 [10] we tested to see if heterogeneous models describe the RomiguierTopAT dataset 

better than the original homogeneous models that were applied (Figures 3 and 4). The standard 

procedure involved in the selection of a heterogeneous model in P4 is depicted in the schematic in 

Figure 1. When models had reached convergence, we completed the Bayes Factor (BF) analysis 

(Figure 5) to find the optimum number of composition vectors and then the optimum number of rate 

matrices for our model. Our optimum model for this dataset is annotated as 2GTR + 4C + 4G (2 GTR 

rate matrices, four composition vectors and four discrete gamma categories). The biggest improvement 

in BF score was 1281 and was for the comparison of the homogeneous model (1GTR + 1C + 4G) to the 

first heterogeneous model (1GTR + 2C + 4G). In addition to this, the number of composition vectors 

appears more important to model the data than the number of rate vectors (Figure 5). For each 

alignment we carried out the same procedure and each model tested was run with five independent runs 

until convergence was reached, with our expectation being topological agreement between independent 

runs. It is critical that the user is confident that convergence has been reached. We examined how the 

MCMC run progressed by examining the ASDOSS (average standard deviation of split supports) 

values of the checkpoints of the MCMC run. An ASDOSS <0.01 would suggest convergence has been 

reached. The likelihood values from the samples taken during the MCMC run were plotted to ensure 

that the likelihoods had reached a plateau [86]. The parameter acceptance rates are a rough indication 

of mixing and convergence. 
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Figure 5. Bayes factor analysis for RomiguierTopAT with heterogeneous models. The 

results depicted in (A) and (B) are for RomiguierTopAT, in both cases the BF result indicating 

the model of best fit is depicted in yellow. The overall model of best fit (for composition 

vectors and rate matrices) is 2GTR + 4C + 4G. (A) The lower triangular matrix of Bayes 

Factors used to find the optimum number of composition vectors for the model; (B) The lower 

triangular matrix of bayes factors used to find the optimum number of rate matrices. 

Combined they produce the best-fit model for the specific dataset. In both (A) and (B) 

significant improvements in model fit as judged by Kass and Raftery criteria [79] are 

shown in green and non-significant in red.  

A consensus tree was made from the MCMC run for the RomiguierTopAT dataset under the  

2GTR + 4C + 4G model. The topology supported the Afrotheria position of the root (Figure 6A). 

However, posterior predictive simulations (PPS) reveal a poor tail area probability of 0.00, showing 

that this model does not adequately describe the data and that the resultant topology is not robust. We 

went on to assess whether any of the 24 P4 models tested had a significant tail area probability for 

RomiguierTopAT. Surprisingly, none of the models had a significant tail area probability; in fact, all 

models we tested had a tail area probability of 0.00, suggesting that P4 cannot model this data 

adequately with the models available. However, the simulated dataset produced using the 

heterogeneous P4 models are a better fit to the real data than the homogeneous model (Figure 3). As 

such, the topology is not significantly supported. This is unusual as P4 is generally capable of showing 

some model fit. The RomiguierTopAT dataset seems to be very difficult to model adequately, perhaps 

this is due to a combination of a high level of heterogeneity across sites and between lineages. But it is 

clear from these analyses that homogeneous modeling is too simplistic and not realistic for this dataset. 

Morgan et al. (2013) showed significant support for the Atlantogenata root using both P4 and 

PhyloBayes [36], but more importantly, the models were shown to adequately describe the data [7]. 

The analysis of Subsets 1–8 in P4 showed some model fit for all these subsets and in all cases of 

Subsets1–8 the heterogeneous model was a better fitting model than a homogeneous. In most cases 

(6/8 of the subsets) the heterogeneous model significantly fits the data (Figure 4). These results for 

Subsets 1–8 illustrate that heterogeneous models are capable of adequately modeling complex data and 

are more appropriate than homogeneous models for the data. 
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Figure 6. Analysis of the position of the mammal root using three different methods.  

(A) Afrotheria position retrieved using RomiguierTopAT alignment and the GTR model in 

RAxML (result = Afrotheria position for the root), and also using the optimum available 

P4 model; and (B) Atlantogenata position retrieved using the 39 taxa mammal dataset from 

Morgan et al. [7] with the CAT-GTR model in PhyloBayes.  

In general, P4 is a powerful approach for phylogeny reconstruction as it contains many 

sophisticated tools for phylogenetic analysis and assessment of models, including methods to test the 

fit of the model to the data in the form of posterior predictive simulations. Through our analysis of the 

RomiguierTopAT data using P4 it was clear that a heterogeneous approach was needed, therefore we 

applied the PhyloBayes heterogeneous model CAT [36] and P4 tests of alternative heterogeneous 

models. The results of the PhyloBayes analysis for the placement of the position of the mammal root 

have been described previously by Morgan et al. (2013) for a dataset derived from the same pool of 

data as the RomiguierTopAT dataset [7]. Here, the CAT-GTR model in PhyloBayes [36] was also 

applied to the RomiguierTopAT alignment and strong support for the Atlantogenata position for the 

root was subsequently retrieved. Importantly, Morgan et al. (2013) showed that for their dataset [6] the 

CAT-GTR model adequately described and fit the data and that homogeneous models did not. Our 

analysis using P4 illustrates that a homogeneous modeling approach is not suitable for the 

RomiguierTopAT data. [Note: In a PhyloBayes [36] analysis the number of biochemical categories is 

optimized during the tree search, therefore if the GTR model (which is nested within the CAT-GTR 

model) is a better fit to the data than the CAT-GTR model, then the CAT-GTR model will reduce to 

the simpler GTR model, thus relinquishing the need to independently test the GTR model on the data.] 

4. Conclusions 

Combining the sophisticated modeling approach in P4 [10] as described in Morgan et al. (2013) [7] 

and the data partitioning method of Romiguier, Ranwez et al. (2013) [85], we show that homogeneous 

models do not describe the RomiguierTopAT data adequately and therefore any topology resulting 

from that model is not significant. While software packages such as RAxML [35] can be incredibly 

powerful and fast, they are not always appropriate for specific datasets. The results for the datasets 

“Subsets 1–8” indicate that modeling heterogeneity across the phylogeny will not always work for a 

specific dataset. In this case, we searched for the optimum heterogeneous GTR model and still failed to 
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adequately model the data. This serves to highlight the importance of checking the adequacy of the 

model for each specific dataset. One cannot assume that any heterogeneous model is adequate. One 

can only trust the phylogeny produced with a model that adequately and statistically significantly 

models that data. However, the question the user needs to ask is “does this model adequately describe 

my data” and if the answer is no then the resultant topology is not reliable. The key is to resist making 

assumptions of the data and instead let the data dictate the approach and the model. As genome-scale 

phylogenies become commonplace and as consilience across data types rapidly takes hold as best 

practice, the importance of developing methods that can efficiently and adequately model data is 

paramount. We have outlined a step-by-step procedure for reconstructing a robust phylogeny using 

appropriate current models, but the onus is very much on the user to understand the methods they 

apply, and to fully and critically assess the limitations of their data and their approach.  
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